

GEOMETRY STRAND

Teaching Guides Learning Activities & Worksheets

Table of Contents

Geometric Ideas- Teachers' Copy	2
Geometric Ideas – <i>Student Activity</i>	3
Lines and Angles	4
Identify Symmetrical Halves	6
Completing Symmetric Figures	7
Problem Solving Activity	8
Worksheet 4 – Slide, Flip or Turn	9
Identifying Congruent Shapes	10

Geometric Ideas- Teachers' Copy

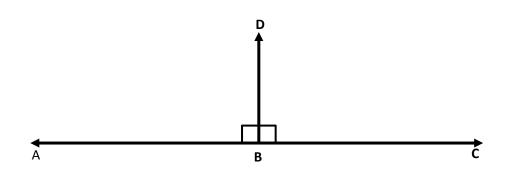
Geometric Figure	Description	Symbol	Read
• A POINT	 Is a location in space Has no dimensions (<i>that means it has no length, breadth or height</i>) Is represented by a dot 	point A	point A
A B LINE	 Is a one-dimensional object that has no end-points (they continue on forever in a plane) By 'one-dimensional' we mean that it has only length The shortest distance between two points 	\overrightarrow{AB} or \overrightarrow{BA}	line AB or line BA
<i>v endpoints</i> X Y LINE SEGMENT	 Is a straight line with two end points (<i>that is, the line does not</i> <i>continue forever</i>) A straight path from one point to another 	$\overline{\mathrm{XY}}$ or $\overline{\mathrm{YX}}$	line segment XY or line segment YX
endpoint M N RAY	 an endless straight path starting at a point Has only one end-point and continues on forever in only one direction 	→ MN	ray MN
$vertex \qquad Q \qquad \sqrt{R} \qquad S \qquad $	 Is formed at the point where two straight lines meet Two rays with common end- point Is measured in degrees 	∠QRS or ∠SQR	angle QRS or angle SQR

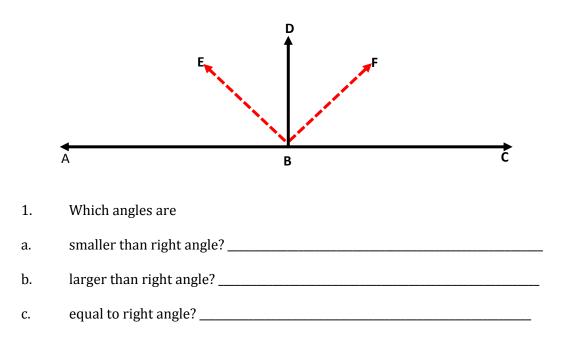
Note to Teacher:

- Introduce Geometry to your students. You can consider informing them of the use of Geometric ideas in real-life, such as in the cartoons that they love to watch (do research here).
- Seek to have discussion with the students about the geometric ideas in the table.
- Note that each student's sheet has areas in the table that they should complete. This should be done as you discuss and guide them along in class.
- ➢ Feel free to use textbooks for exercises.

Geometric Ideas – *Student Activity*

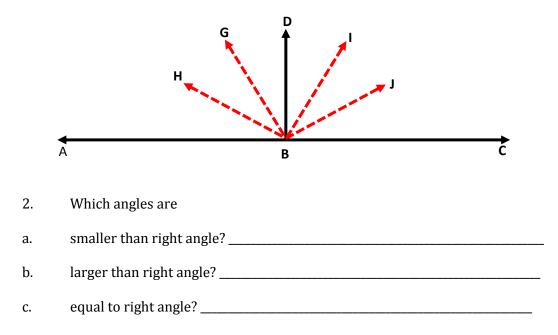
Fill in the blank spaces in the table below.

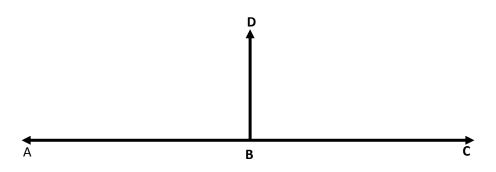

Geometric Idea (Draw it!)	Name & Describe it!	Symbol (Write it!)	Read it!
	 <u>Point</u> Is a location in space Has no dimensions (<i>that means it has no length, breadth or height</i>) Is represented by a dot 	Point A	point A
A	 Is a one-dimensional object that has no end-points (they continue on forever in a plane) By 'one-dimensional' we mean that it has only length The shortest distance between two points 	$\begin{array}{ccc} \leftrightarrow & \leftrightarrow \\ AB \text{ or } BA \end{array}$	line AB or line BA
	 Is a straight line with two end points (<i>that is, the line does not continue forever</i>) A straight path from one point to another 	\overline{XY} or \overline{YX}	line segment XY or line segment YX
Endpoint M N	<u>Ray</u>	→ MN	ray MN
Vertex 0,7 R S			



Lines and Angles

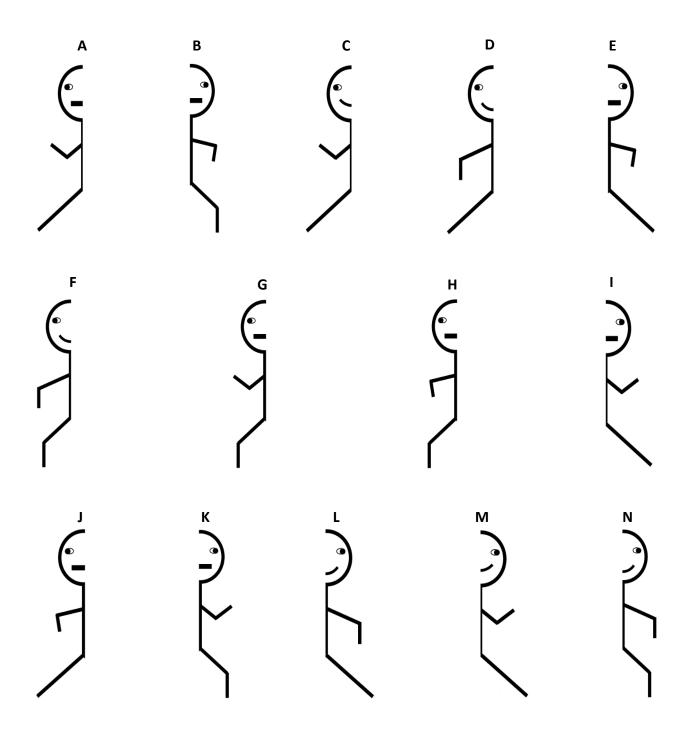
Wendy is playing with some lines. She starts with a horizontal line and a vertical line. The lines intersect to form two right angles: angle BAC and angle DAC.


If she divides each right angle into 2 equal angles, she obtains:



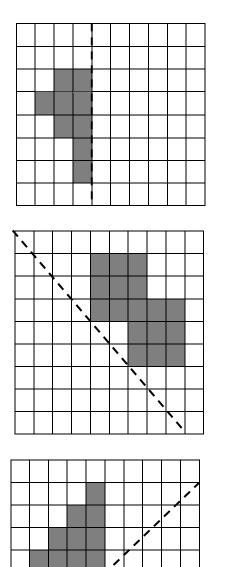
If she divides each right angle into 3 equal angles, she obtains:

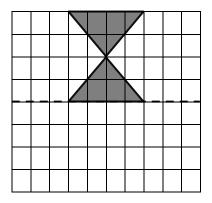
3. In the space below, draw how the shape would look if Wendy divides each right angle into 4 equal pieces.

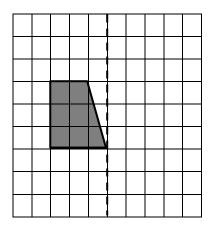

4. Try to work out which angles are smaller than/larger than right angle and which ones are equal to right angle.

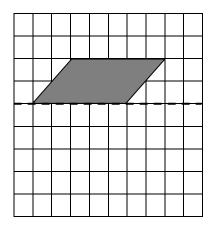
Identify Symmetrical Halves

Below are 14 halves of various 'stick-men'. <u>There are 7 different 'stick-men' in total and each is</u> <u>symmetrical</u>. Which halves can be joined to give a <u>symmetrical</u> stick man?



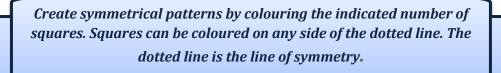

Completing Symmetric Figures


Each figure is half of a symmetric shape. Using the dotted line as a line of symmetry, complete each symmetric figure.

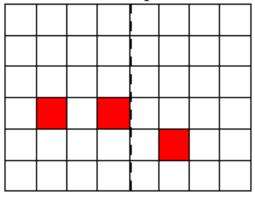


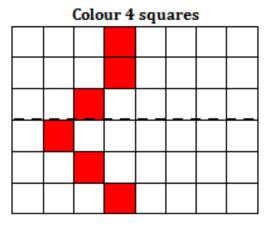
/

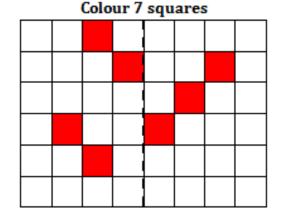
1

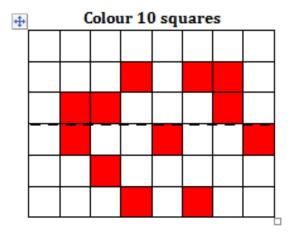


7






Problem Solving Activity



Colour 3 squares

Understand the problem

Where is the line of symmetry? What is a symmetric pattern? How many squares do I have to colour?

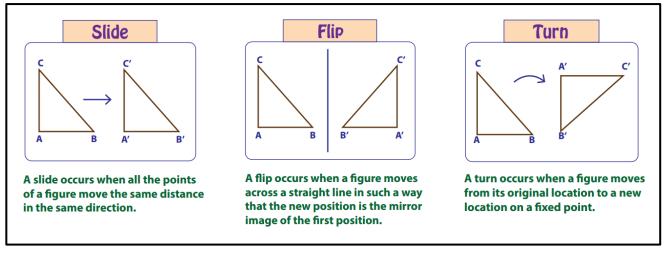
Plan what to do

How can I use the existing shadings to help me to determine which other squares to shade?

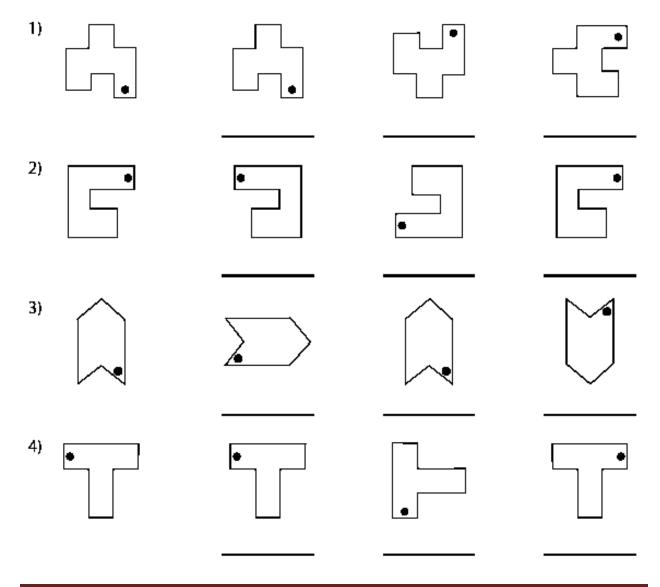
Carry out the plan

Am I making progress? Do I need to re-visit the plan?

Check

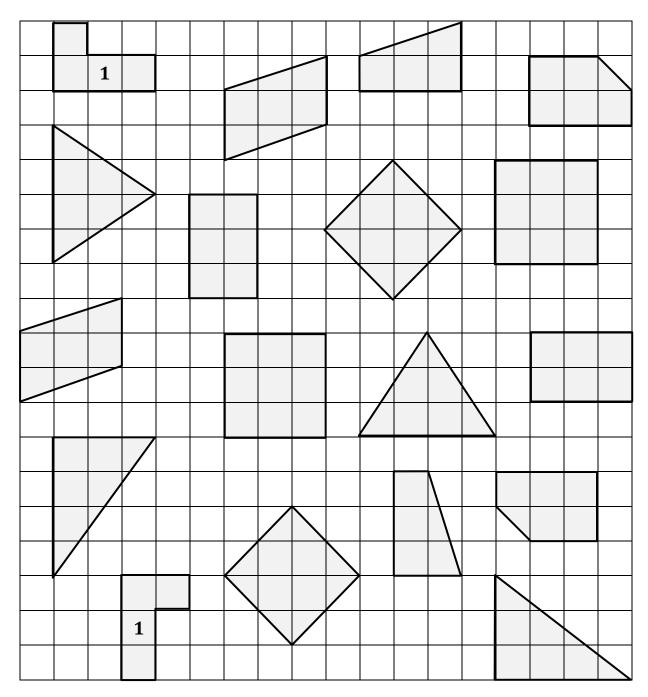

Is my end-product a symmetrical pattern?

8



Worksheet 4 - Slide, Flip or Turn

Recognize how each figure has moved. Write slide, flip or turn below the respective images.



Identifying Congruent Shapes

There are 9 pairs of congruent shapes. Use the numbers 1 to 9 to indicate the pairs of congruent shapes. The first one is done for you.

